3.3.35 \(\int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\) [235]

3.3.35.1 Optimal result
3.3.35.2 Mathematica [A] (verified)
3.3.35.3 Rubi [A] (verified)
3.3.35.4 Maple [B] (verified)
3.3.35.5 Fricas [F]
3.3.35.6 Sympy [F]
3.3.35.7 Maxima [F]
3.3.35.8 Giac [F]
3.3.35.9 Mupad [F(-1)]

3.3.35.1 Optimal result

Integrand size = 29, antiderivative size = 337 \[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {15 b^2 x \left (1-c^2 x^2\right )}{64 c^4 \sqrt {d-c^2 d x^2}}+\frac {b^2 x^3 \left (1-c^2 x^2\right )}{32 c^2 \sqrt {d-c^2 d x^2}}-\frac {15 b^2 \sqrt {1-c^2 x^2} \arcsin (c x)}{64 c^5 \sqrt {d-c^2 d x^2}}+\frac {3 b x^2 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{8 c^3 \sqrt {d-c^2 d x^2}}+\frac {b x^4 \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{8 c \sqrt {d-c^2 d x^2}}-\frac {3 x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{8 c^4 d}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^3}{8 b c^5 \sqrt {d-c^2 d x^2}} \]

output
15/64*b^2*x*(-c^2*x^2+1)/c^4/(-c^2*d*x^2+d)^(1/2)+1/32*b^2*x^3*(-c^2*x^2+1 
)/c^2/(-c^2*d*x^2+d)^(1/2)-15/64*b^2*arcsin(c*x)*(-c^2*x^2+1)^(1/2)/c^5/(- 
c^2*d*x^2+d)^(1/2)+3/8*b*x^2*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)/c^3/(-c^ 
2*d*x^2+d)^(1/2)+1/8*b*x^4*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/2)/c/(-c^2*d* 
x^2+d)^(1/2)+1/8*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b/c^5/(-c^2*d*x^2+ 
d)^(1/2)-3/8*x*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^4/d-1/4*x^3*(a+b 
*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/c^2/d
 
3.3.35.2 Mathematica [A] (verified)

Time = 1.70 (sec) , antiderivative size = 283, normalized size of antiderivative = 0.84 \[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {32 a^2 c \sqrt {d} x \left (-1+c^2 x^2\right ) \left (3+2 c^2 x^2\right )-96 a^2 \sqrt {d-c^2 d x^2} \arctan \left (\frac {c x \sqrt {d-c^2 d x^2}}{\sqrt {d} \left (-1+c^2 x^2\right )}\right )+b^2 \sqrt {d} \sqrt {1-c^2 x^2} \left (32 \arcsin (c x)^3+4 \arcsin (c x) (-16 \cos (2 \arcsin (c x))+\cos (4 \arcsin (c x)))+32 \sin (2 \arcsin (c x))-\sin (4 \arcsin (c x))+8 \arcsin (c x)^2 (-8 \sin (2 \arcsin (c x))+\sin (4 \arcsin (c x)))\right )-4 a b \sqrt {d} \sqrt {1-c^2 x^2} (16 \cos (2 \arcsin (c x))-\cos (4 \arcsin (c x))-4 \arcsin (c x) (6 \arcsin (c x)-8 \sin (2 \arcsin (c x))+\sin (4 \arcsin (c x))))}{256 c^5 \sqrt {d} \sqrt {d-c^2 d x^2}} \]

input
Integrate[(x^4*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 
output
(32*a^2*c*Sqrt[d]*x*(-1 + c^2*x^2)*(3 + 2*c^2*x^2) - 96*a^2*Sqrt[d - c^2*d 
*x^2]*ArcTan[(c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[d]*(-1 + c^2*x^2))] + b^2*Sqr 
t[d]*Sqrt[1 - c^2*x^2]*(32*ArcSin[c*x]^3 + 4*ArcSin[c*x]*(-16*Cos[2*ArcSin 
[c*x]] + Cos[4*ArcSin[c*x]]) + 32*Sin[2*ArcSin[c*x]] - Sin[4*ArcSin[c*x]] 
+ 8*ArcSin[c*x]^2*(-8*Sin[2*ArcSin[c*x]] + Sin[4*ArcSin[c*x]])) - 4*a*b*Sq 
rt[d]*Sqrt[1 - c^2*x^2]*(16*Cos[2*ArcSin[c*x]] - Cos[4*ArcSin[c*x]] - 4*Ar 
cSin[c*x]*(6*ArcSin[c*x] - 8*Sin[2*ArcSin[c*x]] + Sin[4*ArcSin[c*x]])))/(2 
56*c^5*Sqrt[d]*Sqrt[d - c^2*d*x^2])
 
3.3.35.3 Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {5210, 5138, 262, 262, 223, 5210, 5138, 262, 223, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {3 \int \frac {x^2 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{4 c^2}+\frac {b \sqrt {1-c^2 x^2} \int x^3 (a+b \arcsin (c x))dx}{2 c \sqrt {d-c^2 d x^2}}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {3 \int \frac {x^2 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{4 c^2}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \int \frac {x^4}{\sqrt {1-c^2 x^2}}dx\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {3 \int \frac {x^2 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{4 c^2}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \int \frac {x^2}{\sqrt {1-c^2 x^2}}dx}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {3 \int \frac {x^2 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{4 c^2}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {3 \int \frac {x^2 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{4 c^2}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {3 \left (\frac {b \sqrt {1-c^2 x^2} \int x (a+b \arcsin (c x))dx}{c \sqrt {d-c^2 d x^2}}+\frac {\int \frac {(a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{2 c^2}-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 c^2 d}\right )}{4 c^2}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5138

\(\displaystyle \frac {3 \left (\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \int \frac {x^2}{\sqrt {1-c^2 x^2}}dx\right )}{c \sqrt {d-c^2 d x^2}}+\frac {\int \frac {(a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{2 c^2}-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 c^2 d}\right )}{4 c^2}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {3 \left (\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\int \frac {1}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )}{c \sqrt {d-c^2 d x^2}}+\frac {\int \frac {(a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{2 c^2}-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 c^2 d}\right )}{4 c^2}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {3 \left (\frac {\int \frac {(a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}}dx}{2 c^2}-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )}{c \sqrt {d-c^2 d x^2}}\right )}{4 c^2}-\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5152

\(\displaystyle -\frac {x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{4 c^2 d}+\frac {3 \left (-\frac {x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{2 c^2 d}+\frac {\sqrt {1-c^2 x^2} (a+b \arcsin (c x))^3}{6 b c^3 \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{2} x^2 (a+b \arcsin (c x))-\frac {1}{2} b c \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )\right )}{c \sqrt {d-c^2 d x^2}}\right )}{4 c^2}+\frac {b \sqrt {1-c^2 x^2} \left (\frac {1}{4} x^4 (a+b \arcsin (c x))-\frac {1}{4} b c \left (\frac {3 \left (\frac {\arcsin (c x)}{2 c^3}-\frac {x \sqrt {1-c^2 x^2}}{2 c^2}\right )}{4 c^2}-\frac {x^3 \sqrt {1-c^2 x^2}}{4 c^2}\right )\right )}{2 c \sqrt {d-c^2 d x^2}}\)

input
Int[(x^4*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 
output
-1/4*(x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(c^2*d) + (b*Sqrt[1 - 
 c^2*x^2]*((x^4*(a + b*ArcSin[c*x]))/4 - (b*c*(-1/4*(x^3*Sqrt[1 - c^2*x^2] 
)/c^2 + (3*(-1/2*(x*Sqrt[1 - c^2*x^2])/c^2 + ArcSin[c*x]/(2*c^3)))/(4*c^2) 
))/4))/(2*c*Sqrt[d - c^2*d*x^2]) + (3*(-1/2*(x*Sqrt[d - c^2*d*x^2]*(a + b* 
ArcSin[c*x])^2)/(c^2*d) + (Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c 
^3*Sqrt[d - c^2*d*x^2]) + (b*Sqrt[1 - c^2*x^2]*((x^2*(a + b*ArcSin[c*x]))/ 
2 - (b*c*(-1/2*(x*Sqrt[1 - c^2*x^2])/c^2 + ArcSin[c*x]/(2*c^3)))/2))/(c*Sq 
rt[d - c^2*d*x^2])))/(4*c^2)
 

3.3.35.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 5138
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] 
:> Simp[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n 
/(d*(m + 1)))   Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2 
*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.3.35.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(721\) vs. \(2(297)=594\).

Time = 0.23 (sec) , antiderivative size = 722, normalized size of antiderivative = 2.14

method result size
default \(-\frac {a^{2} x^{3} \sqrt {-c^{2} d \,x^{2}+d}}{4 c^{2} d}-\frac {3 a^{2} x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{4} d}+\frac {3 a^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{4} \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{8 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )}{8 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \arcsin \left (c x \right )^{2}-1\right ) x}{16 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (5 \arcsin \left (c x \right )\right )}{128 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 \arcsin \left (c x \right )^{2}-1\right ) \sin \left (5 \arcsin \left (c x \right )\right )}{512 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {15 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (3 \arcsin \left (c x \right )\right )}{128 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (56 \arcsin \left (c x \right )^{2}-31\right ) \sin \left (3 \arcsin \left (c x \right )\right )}{512 c^{5} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-c^{2} x^{2}+1}}{16 c^{5} \sqrt {-d \left (c^{2} x^{2}-1\right )}}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (5 \arcsin \left (c x \right )\right )}{256 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (5 \arcsin \left (c x \right )\right )}{64 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {15 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (3 \arcsin \left (c x \right )\right )}{256 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {7 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{64 c^{5} d \left (c^{2} x^{2}-1\right )}\right )\) \(722\)
parts \(-\frac {a^{2} x^{3} \sqrt {-c^{2} d \,x^{2}+d}}{4 c^{2} d}-\frac {3 a^{2} x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{4} d}+\frac {3 a^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{4} \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{8 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )}{8 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 \arcsin \left (c x \right )^{2}-1\right ) x}{16 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (5 \arcsin \left (c x \right )\right )}{128 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 \arcsin \left (c x \right )^{2}-1\right ) \sin \left (5 \arcsin \left (c x \right )\right )}{512 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {15 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \cos \left (3 \arcsin \left (c x \right )\right )}{128 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (56 \arcsin \left (c x \right )^{2}-31\right ) \sin \left (3 \arcsin \left (c x \right )\right )}{512 c^{5} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-c^{2} x^{2}+1}}{16 c^{5} \sqrt {-d \left (c^{2} x^{2}-1\right )}}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{8 c^{4} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (5 \arcsin \left (c x \right )\right )}{256 c^{5} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (5 \arcsin \left (c x \right )\right )}{64 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {15 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \cos \left (3 \arcsin \left (c x \right )\right )}{256 c^{5} d \left (c^{2} x^{2}-1\right )}+\frac {7 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{64 c^{5} d \left (c^{2} x^{2}-1\right )}\right )\) \(722\)

input
int(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/4*a^2*x^3/c^2/d*(-c^2*d*x^2+d)^(1/2)-3/8*a^2/c^4*x/d*(-c^2*d*x^2+d)^(1/ 
2)+3/8*a^2/c^4/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+ 
b^2*(-1/8*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^5/d/(c^2*x^2-1)*arcs 
in(c*x)^3+1/8*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^5/d/(c^2*x^2-1)* 
arcsin(c*x)+1/16*(-d*(c^2*x^2-1))^(1/2)/c^4/d/(c^2*x^2-1)*(2*arcsin(c*x)^2 
-1)*x-1/128*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*arcsin(c*x)*cos(5*arc 
sin(c*x))-1/512*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*(8*arcsin(c*x)^2- 
1)*sin(5*arcsin(c*x))+15/128*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*arcs 
in(c*x)*cos(3*arcsin(c*x))+1/512*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)* 
(56*arcsin(c*x)^2-31)*sin(3*arcsin(c*x)))+2*a*b*(-3/16*(-d*(c^2*x^2-1))^(1 
/2)*(-c^2*x^2+1)^(1/2)/c^5/d/(c^2*x^2-1)*arcsin(c*x)^2-1/16/c^5/(-d*(c^2*x 
^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)+1/8*(-d*(c^2*x^2-1))^(1/2)/c^4/d/(c^2*x^2- 
1)*arcsin(c*x)*x-1/256*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*cos(5*arcs 
in(c*x))-1/64*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*arcsin(c*x)*sin(5*a 
rcsin(c*x))+15/256*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*cos(3*arcsin(c 
*x))+7/64*(-d*(c^2*x^2-1))^(1/2)/c^5/d/(c^2*x^2-1)*arcsin(c*x)*sin(3*arcsi 
n(c*x)))
 
3.3.35.5 Fricas [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="frica 
s")
 
output
integral(-(b^2*x^4*arcsin(c*x)^2 + 2*a*b*x^4*arcsin(c*x) + a^2*x^4)*sqrt(- 
c^2*d*x^2 + d)/(c^2*d*x^2 - d), x)
 
3.3.35.6 Sympy [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^{4} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

input
integrate(x**4*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)
 
output
Integral(x**4*(a + b*asin(c*x))**2/sqrt(-d*(c*x - 1)*(c*x + 1)), x)
 
3.3.35.7 Maxima [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxim 
a")
 
output
-1/8*a^2*(2*sqrt(-c^2*d*x^2 + d)*x^3/(c^2*d) + 3*sqrt(-c^2*d*x^2 + d)*x/(c 
^4*d) - 3*arcsin(c*x)/(c^5*sqrt(d))) - sqrt(d)*integrate((b^2*x^4*arctan2( 
c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x^4*arctan2(c*x, sqrt(c*x + 1 
)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^2*d*x^2 - d), x)
 
3.3.35.8 Giac [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x^{4}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac" 
)
 
output
integrate((b*arcsin(c*x) + a)^2*x^4/sqrt(-c^2*d*x^2 + d), x)
 
3.3.35.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {x^4\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

input
int((x^4*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)
 
output
int((x^4*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)